Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
mBio ; 14(3): e0347822, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2314960

ABSTRACT

Apobec3A is involved in the antiviral host defense, targeting nuclear DNA, introducing point mutations, and thereby activating DNA damage response (DDR). Here, we found a significant upregulation of Apobec3A during HAdV infection, including Apobec3A protein stabilization mediated by the viral proteins E1B-55K and E4orf6, which subsequently limited HAdV replication and most likely involved a deaminase-dependent mechanism. The transient silencing of Apobec3A enhanced adenoviral replication. HAdV triggered Apobec3A dimer formation and enhanced activity to repress the virus. Apobec3A decreased E2A SUMOylation and interfered with viral replication centers. A comparative sequence analysis revealed that HAdV types A, C, and F may have evolved a strategy to escape Apobec3A-mediated deamination via reduced frequencies of TC dinucleotides within the viral genome. Although viral components induce major changes within infected cells to support lytic life cycles, our findings demonstrate that host Apobec3A-mediated restriction limits virus replication, albeit that HAdV may have evolved to escape this restriction. This allows for novel insights into the HAdV/host-cell interplay, which broaden the current view of how a host cell can limit HAdV infection. IMPORTANCE Our data provide a novel conceptual insight into the virus/host-cell interplay, changing the current view of how a host-cell can defeat a virus infection. Thus, our study reveals a novel and general impact of cellular Apobec3A on the intervention of human adenovirus (HAdV) gene expression and replication by improving the host antiviral defense mechanisms, thereby providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways that are modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as COVID vaccine vectors and also frequently serve as tools in human gene therapy and oncolytic treatment options. HAdV constitute an ideal model system by which to analyze the transforming capabilities of DNA tumor viruses as well as the underlying molecular principles of virus-induced and cellular tumorigenesis.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Humans , Adenoviruses, Human/physiology , Adenoviridae/genetics , Virus Replication , COVID-19 Vaccines , Deamination , Antiviral Agents/metabolism , Gene Expression
2.
Adv Med Sci ; 68(1): 61-70, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220360

ABSTRACT

PURPOSE: Truncated human angiotensin-converting enzyme 2 (hACE2) expression rises a great scientific interest, considering its possible therapeutic and diagnostic applications. A promising research direction is the therapeutic use of smaller hACE2 versions with high binding affinity as decoy receptors for S1 glycoprotein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Another possible application is the use of these truncated versions for the functionalization of appropriate nanomaterials for constructing novel biosensors with a rapid and sensitive response for coronavirus disease 2019 (COVID-19) detection. The present study aimed to find a suitable system for high yield expression of different versions of truncated hACE2. MATERIALS AND METHODS: The encoding DNA for the hACE2 fragments (7-507 aa, 16-128 aa, and 30-357 aa) was obtained by PCR amplification using as template pcDNA3.1-hACE2 plasmid and further cloned into pET28a(+) and pET-SUMO vectors. The positive clones were selected and the correct DNA insertion was confirmed through gene sequencing. The truncated hACE2 proteins were further expressed in two E. coli strains, Rosetta(DE3) and BL21(DE3). RESULTS: For all three truncated hACE2 mini proteins, pET28a(+) does not lead to protein expression, regardless of the bacterial strain. The situation changes with the use of the pET-SUMO expression system when all hACE2 fragments are expressed, but with higher efficiency in E. coli BL21(DE3) than E. coli Rosetta. CONCLUSION: In the present study, we showed that different versions of recombinant hACE2 are successfully expressed in E. coli BL21(DE3) by using pET-SUMO expression system.


Subject(s)
COVID-19 , Humans , Escherichia coli/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Plasmids
3.
13th International Conference on Information and Communication Technology Convergence, ICTC 2022 ; 2022-October:1750-1755, 2022.
Article in English | Scopus | ID: covidwho-2161408

ABSTRACT

Due to COVID-19, ordering food through online shopping increased. Accordingly, the use of logistics and delivery services is also increasing. As the number of parcels to be delivered gets bigger, the efficiency of the delivery mechanism and battery efficiency becomes important. The problem of finding the route traveling several destinations at once is called as Traveling Salesman Problem (TSP). There are several algorithms suggested to solve it in polynomial time. Among them, this paper experimented to compare the performance of two algorithms, the greedy algorithm, and the branch-and-bound algorithm. We used the Simulation of Urban Mobility (SUMO) program to test the vehicle running based on the calculated route by two algorithms. The average running time and charging time are recorded to evaluate the performance. Through this experiment, we found out that the branch-and-bound algorithm provides in a faster route selection and consumes less battery than the greedy algorithm. © 2022 IEEE.

4.
25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022 ; 2022-October:298-303, 2022.
Article in English | Scopus | ID: covidwho-2136416

ABSTRACT

Public transport forms the backbone of the city's operation. Proper planning and investment of public transport can create additional jobs to revitalize and recover cities from covid-19. In this paper, we propose a combined dispatching-operation bus model predictive control strategy, where a rolling horizon mechanism is adopted to control the bus system in a real-time manner. Either a bus platoon or a single bus is allowed to be dispatched in each trip, and bus re-dispatching is captured in the system to realistically reflect the real-world. Also, the additional bus initial constraints allow control to be applied at any time when buses are either driving on the road or loading at the stop. Model complexity is investigated by solving the optimization problem under various prediction horizons, number of buses and bus stops. Furthermore, the comparison experiment with a high-frequency fixed dispatching method is performed on the Singapore bus line 179A developed in SUMO simulator to illustrate the effectiveness of the proposed method. © 2022 IEEE.

5.
Protein Pept Lett ; 29(7): 605-610, 2022.
Article in English | MEDLINE | ID: covidwho-2054706

ABSTRACT

BACKGROUND: SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor for entering the host cells. Production of the ACE2 molecule is important because of its potency to use as a blocker and therapeutic agent against SARS-CoV-2 for the prophylaxis and treatment of COVID-19. OBJECTIVE: The recombinant human ACE2 (rhACE2) is prone to form an inclusion body when expressed in the bacterial cells. METHODS: We used the SUMO tag fused to the rhACE2 molecule to increase the expression level and solubility of the fusion protein. Afterward, the freeze-thawing method plus 2 M urea solubilized aggregated proteins. Subsequently, the affinity of solubilized rhACE2 to the receptor binding domain (RBD) of the SARS-CoV-2 spike was assayed by ELISA and SPR methods. RESULTS: SUMO protein succeeded in increasing the expression level but not solubilization of the fusion protein. The freeze-thawing method could solubilize and recover the aggregated fusion proteins significantly. Also, ELISA and SPR assays confirmed the interaction between solubilized rhACE2 and RBD with high affinity. CONCLUSION: The SUMO tag and freeze- Conclusion: The SUMO tag and freeze-thawing method would be utilized for high-level expression and solubilization of recombinant rhACE2 protein.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Protein Binding , SARS-CoV-2 , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Urea/metabolism
6.
Leukemia and Lymphoma ; 62(SUPPL 1):S34, 2021.
Article in English | EMBASE | ID: covidwho-1747045

ABSTRACT

Introduction: CLL is characterized by deficient immunity which clinically manifests as an increased predisposition toward malignancies and infectious complications. T-cells from patients with CLL exhibit a skewed repertoire with a predominance of Tregs as well as impaired immune synapse formation and cytotoxic function. Unlike chemotherapy, novel targeted agents may have beneficial immunomodulatory effects, which may be particularly relevant in the COVID-19 era. Small ubiquitin-like modifier (SUMO) family proteins regulate a variety of cellular processes, including nuclear trafficking, gene transcription, and cell cycle progression, via post-translational modification of target proteins. Sumoylation regulates NFjB signaling, IFN response, and NFAT activation, processes indispensable in immune cell activation. Despite this, the role of sumoylation in T cell biology in the context of cancer is not known. TAK-981 is a small molecule inhibitor of the SUMO-activating enzyme (SAE) that forms a covalent adduct with an activated SUMO protein, thereby preventing its transfer to the SUMO-conjugating enzyme (Ubc9). Here, we investigated the immunomodulatory effects of TAK-981 in CLL. Methods: T cells from patients with CLL were purified using Dynabeads. Activation, proliferation, and apoptosis of CD3+ T cells were studied following T-cell receptor engagement (TCR;aCD3/CD28) with/without 0-1 lM TAK-981. Cytokines were measured after in vitro stimulation. For polarization assays, FACS-sorted naïve CD4+ T cells were cultured for 7 days in control or differentiation media. For gene expression profiling (GEP;Clariom S), RNA was harvested after 3 and 24 h of TCR engagement from FACS-sorted naïve CD4+ T cells. For in vivo immunization experiments, CD4+KJ1-26+ cells were inoculated IV into BALB/cJ mice. Mice received 100 mg IV ovalbumin ± R848 followed by TAK-981 7.5 mg/kg or vehicle control IV twice weekly for 10 days before spleen collection. Both recipient and transplanted splenocytes were analyzed. For analysis of tumor-infiltrating lymphocytes (TILs), BALB/c mice were injected with 1×106 A20 lymphoma cells and treated as above. TAK-981 was provided by Millennium Pharmaceuticals, Inc. (Cambridge, MA, USA). Results: T cells from patients with CLL demonstrated high baseline protein sumoylation that slightly increased following TCR engagement. Treatment with TAK-981 significantly downregulated SUMO1 and SUMO2/3-modified protein levels, yet did not disrupt early TCR signaling as evidenced by sustained ZAP70, p65/NFjB, and NFAT activation detected by immunoblotting, immunocytochemistry, and GEP. Treatment with TAK-981 resulted in dose-dependent upregulation of the early activation marker CD69 in CD4+ T cells following 72 and 96 h of TCR stimulation vs. control. Meanwhile, the expression of CD25, HLA-DR, and CD40L was delayed in the presence of TAK-981. Interestingly, CD38, an IFN response target, was induced 2-fold in TAK-981-treated cells after 24 h and persisted at high levels at subsequent timepoints. T cell proliferation was reduced in the presence of high (1 lM) but not low/intermediate concentrations of TAK-981, accompanied by reduced S phase entry and decreased synthesis of IL- 2. However, T cells did not undergo apoptosis under those conditions. Targeting SAE in either control or Th1/Treg polarizing conditions facilitated an increase in IFNc and loss of FoxP3 expression (accompanied by decreased IL-2/STAT5), suggesting a shift toward Th1 and away from Treg phenotype, respectively. GEP (Reactome, GSEA) confirmed a dramatically upregulated IFN response in TAK-981-treated CD4+ naïve T cells. Furthermore, targeting SAE enhanced degranulation (CD107a), IFNc, and perforin secretion in cytotoxic CD8+ T cells and potentiated T cell cytotoxicity in allogeneic assays with lymphoma cells (OCI-LY3, U2932) as targets. Consistent with our in vitro data, OVA-stimulated transplanted transgenic KJ1-26+ splenocytes, as well as total CD4+ T cells from recipient mice treated with TAK-981 in vivo exhibited a significant reduction in express on of FoxP3 and an increased production of IFNc. In the A20 syngeneic model, treatment with TAK-981 similarly downregulated FoxP3 expression in CD4+ TILs and induced IFNc secretion in CD8+ TILs. Conclusion: Using a combination of in vitro and in vivo experiments, we demonstrate that pharmacologic targeting of sumoylation with TAK-981 does not impair proximal TCR signaling in T cells obtained from patients with CLL, but leads to rebalancing toward healthy immune T cell subsets via induction of IFN response and downmodulation of Tregs. These data provide a strong rationale for continued investigation of TAK-981 in CLL and lymphoid malignancies.

7.
Front Chem ; 10: 815991, 2022.
Article in English | MEDLINE | ID: covidwho-1731756

ABSTRACT

Genetically encoded non-canonical amino acids (ncAAs) with electrophilic moieties are excellent tools to investigate protein-protein interactions (PPIs) both in vitro and in vivo. These ncAAs, including a series of alkyl bromide-based ncAAs, mainly target cysteine residues to form protein-protein cross-links. Although some reactivities towards lysine and tyrosine residues have been reported, a comprehensive understanding of their reactivity towards a broad range of nucleophilic amino acids is lacking. Here we used a recently developed OpenUaa search engine to perform an in-depth analysis of mass spec data generated for Thioredoxin and its direct binding proteins cross-linked with an alkyl bromide-based ncAA, BprY. The analysis showed that, besides cysteine residues, BprY also targeted a broad range of nucleophilic amino acids. We validated this broad reactivity of BprY with Affibody/Z protein complex. We then successfully applied BprY to map a binding interface between SUMO2 and SUMO-interacting motifs (SIMs). BprY was further applied to probe SUMO2 interaction partners. We identified 264 SUMO2 binders, including several validated SUMO2 binders and many new binders. Our data demonstrated that BprY can be effectively used to probe protein-protein interaction interfaces even without cysteine residues, which will greatly expand the power of BprY in studying PPIs.

8.
5th International Conference on Intelligent Computing in Data Sciences, ICDS 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1672721

ABSTRACT

COVID-19 has arisen great control challenges to Governments and decision-makers. In 2020, the COVID-19 pandemic has spread around the world, causing nearly 123 million of confirmed cases (March 22, 2021). With the fact that cities are densely populated and public transport is a place that gathers a great number of populations, questions of the impact of urban mobility on COVID-19 propagation and the impact of protection measures on COVID-19 propagation are to be addressed. This research paper presents our novel transport based approach for modeling and simulating COVID-19 disease centered on the SUMO traffic simulator. Conventional approaches will be presented firstly, we discuss their pros and cons and we give a comparison. Based on their comparison, we noticed that mathematical, spatiooral, cellular automata and agent-based models cannot represent many transport aspects related to transport restrictions (e.g., barriers and reduction of vehicles capacities). We detail then the proposed approach in which we describe the required data, which are Open Street Map data, traffic data, individuals' data, pandemic and restrictions data. We are currently using this approach for developing a COVID-19 simulator based on the SUMO traffic simulator. Obtained intermediate results confirmed that the proposed approach addresses well the above-mentioned questions. © 2021 IEEE.

9.
Pathog Glob Health ; 115(5): 292-299, 2021 07.
Article in English | MEDLINE | ID: covidwho-1151516

ABSTRACT

Over the past 20 years, humankind has encountered three severe coronavirus outbreaks. Currently ongoing, COVID-19 (coronavirus disease 2019) was declared a pandemic due to its massive impact on global health and the economy. Numerous scientists are working to identify efficacious therapeutic agents for COVID-19, although treatment ability has yet to be demonstrated. The SUMO (small ubiquitin-like modifier) system has diverse roles in viral manipulation, but the function of SUMO in coronaviruses is still unknown. The objective of this review article is to present recently published data suggesting contributions of the host SUMO system to coronavirus infection. These findings underscore the potential of SUMO as a novel target for anti-coronavirus therapy, and the need for a deeper understanding of coronavirus pathology to prepare and prevail against the current and emerging coronavirus outbreaks.


Subject(s)
COVID-19 , Disease Outbreaks , Humans , Pandemics , SARS-CoV-2
10.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

11.
Adv Exp Med Biol ; 1233: 263-277, 2020.
Article in English | MEDLINE | ID: covidwho-824704

ABSTRACT

SUMO is a ubiquitin-like protein that covalently binds to lysine residues of target proteins and regulates many biological processes such as protein subcellular localization or stability, transcription, DNA repair, innate immunity, or antiviral defense. SUMO has a critical role in the signaling pathway governing type I interferon (IFN) production, and among the SUMOylation substrates are many IFN-induced proteins. The overall effect of IFN is increasing global SUMOylation, pointing to SUMO as part of the antiviral stress response. Viral agents have developed different mechanisms to counteract the antiviral activities exerted by SUMO, and some viruses have evolved to exploit the host SUMOylation machinery to modify their own proteins. The exploitation of SUMO has been mainly linked to nuclear replicating viruses due to the predominant nuclear localization of SUMO proteins and enzymes involved in SUMOylation. However, SUMOylation of numerous viral proteins encoded by RNA viruses replicating at the cytoplasm has been lately described. Whether nuclear localization of these viral proteins is required for their SUMOylation is unclear. Here, we summarize the studies on exploitation of SUMOylation by cytoplasmic RNA viruses and discuss about the requirement for nuclear localization of their proteins.


Subject(s)
Cytoplasm/virology , RNA Viruses/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Viral Proteins/metabolism , Cell Nucleus/metabolism , Humans , Sumoylation
SELECTION OF CITATIONS
SEARCH DETAIL